
https://xoops.org - XOOPS Web Application System - Powered by You!

The MVC pattern in Common Utilities - Tutorials

42066

NEWS_PDF_AUTHOR: bitcero

NEWS_PDF_DATE: 2014/11/18 21:20:00

 Probably very few of you know it, but Common Utilities have included since version 2.2, a basic
implementation of the pattern MVC (Model - View - Controller). In this article I will give you a
basic explanation of its operation in Common Utilities and integrated modules. If you still do not
know what MVC is, please read this article on Wikipedia to learn more about it. How MVC
works in Common Utilities When a module uses the MVC features of Common Utilities, all
requests are received through the URL and it's the job of RMCommon to receive, process and
direct them to the appropriate module. To achieve that, RMCommon includes an appropriate
option to specify where to receive requests for each module. This is done through the
configuration, indicating the URL you use each module. For example, if the module is that we
look for is located in the "inventory" directory, and RMCommon configuration has established as
their path to the folder "inventory" when RMCommon receives a request to the
URLhttp://sitio.com/inventorios automatically redirect the request
tohttp://sitio.com/modules/inventory . This means that the module will respond to all requests
made ??with misitio.com/inventarios . URL Parameters Once RMCommon knows where to
locate each module, you can tell that we get the module by specifying the parameters of the
URL. Parameters provided must be written in the form module / controller / action / other-
parameters . This simple format allows all requests to the module, which are handled by
RMCommon follows: Common Utilities finds the appropriate driver folder controllers within the
module's directory. Take for example the URLhttp://sitio.com/ library / books / list / category /
bestsellers / The process is as follows: The corresponding module is located library. Depending
on the routes that have been configured, this directory could match the directory of the module
or be a different one. In this sample library is the directory of the module. Common Utilities
driver looking books in the directory controllers of the module library , and loads the PHP class.
Now find the corresponding method to the action list and processes the request by passing the
parameters category = bestsellers . These parameters must always be in pairs. After processing
the data, Common Utilities get the template (view) and returns the corresponding result. Some
conventions in this How to locate the controllers? To begin, the drivers should be located as
files within the directory controllers of each module. In addition, there are certain rules for
naming files that contain drivers. In our example (yes, the library) the driver file should be called
books-controller.php . In addition, this file should contain a class, the controller itself, named as
follows: Library_Books_Controller and must inherit from the main class RMController . Finally,
the class must contain a method called list , which will be invoked by RMCommon to present a
result. Until here everything is clear? So these are the rules: - The driver files must be located in
the directory controllers of the module. - The file name must follow the rule -controller.php . -
The controlling class within the file must be named _ _controller , and should contain as many
methods as actions are to be processed. The methods / actions should be named according to

 1 / 6

https://xoops.org/modules/news/article.php?storyid=6675
http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
http://sitio.com/inventorios
http://sitio.com/modules/inventory
http://sitio.com/

https://xoops.org - XOOPS Web Application System - Powered by You!

the action requested by the URL. If the action is called form , the created class must contain a
method form () . If the action is called categories-form , then the class must contain a method
called categories_form () . A controller class looks like this:
 class Mymodule_Nombrecontrolador_Controller extends RMController
{
 use RMModuleAjax , RMProperties , RMModels ;

 public function __construct () {
 parent :: __construct ();
 $ this -> default = 'index' ; // default action
 $ this -> controller = 'categories' ;
 }

 public function index () {
 // Logic index action

 $ This -> tpl -> header ()
 requires $ this -> parent -> view ;
 $ this -> tpl -> footer ();
 }
}
What about the models? Models are only accessible through the controller. This means that
they can only be used by the methods of the controller class. The models also have some
specific rules: - Must be located in the module's /models folder . - A model file must be named
as -model.php . - The file must contain a class named _ _model . A typical statement from an
exact model would be:
 class Mymodule_Nombremodelo_Model extends RMActiveRecord

{
 use RMModels ;

 public function __construct () {

 parent :: __construct ('model' , 'module');

 / **
 * Titles table fields
 * /
 $ this -> titles = array (
 'column' => __ ('Column Title' , 'module'),
 'column2' => __ ('Title column2' , 'module'),
 ...
);

 }
}

 2 / 6

https://xoops.org - XOOPS Web Application System - Powered by You!

And the views? Eventually we get the Views. These are actually templates that are derived
from the name of the action. For the above example, where the module is used library and the
driver is requested books for executing the method (action) list , Common Utilities get the
template list.php , because it is the one that corresponds to the action list . Easy, right? It
follows that the view files (templates) should be appointed as the action (controller method)
running. If our action is the name of form , so our staff must be appointed form.php . If the action
is the name -form categories , also our file should be named categories-form.php . One more
thing. The Views, as in any module, should be stored in the directory templates module, but not
directly, but in appropriate subfolder, depending on the following cases. - Templates Folder can
contain standard templates (as commonly used in the modules). - Modules can have templates
for the control panel or section templates for public, therefore within the directory /templates
there should be two subfolders: backend and frontend . - Within each of these subfolders there
should be a new subfolder for each driver that handles Views. If the driver is called categories,
then there must be a subfolder called categories where the Views will be kept for each action.
This new approach of module development in XOOPS enables faster and more structured
development. Furthermore, with its auxiliary objects, Common Utilities facilitates the
implementation of AJAX in modules allowing more intuitive and easy to use experience for
users.

https://xoops.org - XOOPS Web Application System - Powered by You!

 Probably very few of you know it, but Common Utilities have included since version 2.2, a basic
implementation of the pattern MVC (Model - View - Controller). In this article I will give you a
basic explanation of its operation in Common Utilities and integrated modules. If you still do not
know what MVC is, please read this article on Wikipedia to learn more about it. How MVC
works in Common Utilities When a module uses the MVC features of Common Utilities, all
requests are received through the URL and it's the job of RMCommon to receive, process and
direct them to the appropriate module. To achieve that, RMCommon includes an appropriate
option to specify where to receive requests for each module. This is done through the
configuration, indicating the URL you use each module. For example, if the module is that we
look for is located in the "inventory" directory, and RMCommon configuration has established as
their path to the folder "inventory" when RMCommon receives a request to the
URLhttp://sitio.com/inventorios automatically redirect the request
tohttp://sitio.com/modules/inventory . This means that the module will respond to all requests
made ??with misitio.com/inventarios . URL Parameters Once RMCommon knows where to
locate each module, you can tell that we get the module by specifying the parameters of the
URL. Parameters provided must be written in the form module / controller / action / other-
parameters . This simple format allows all requests to the module, which are handled by
RMCommon follows: Common Utilities finds the appropriate driver folder controllers within the
module's directory. Take for example the URLhttp://sitio.com/ library / books / list / category /
bestsellers / The process is as follows: The corresponding module is located library. Depending
on the routes that have been configured, this directory could match the directory of the module
or be a different one. In this sample library is the directory of the module. Common Utilities
driver looking books in the directory controllers of the module library , and loads the PHP class.
Now find the corresponding method to the action list and processes the request by passing the
parameters category = bestsellers . These parameters must always be in pairs. After processing
the data, Common Utilities get the template (view) and returns the corresponding result. Some
conventions in this How to locate the controllers? To begin, the drivers should be located as
files within the directory controllers of each module. In addition, there are certain rules for
naming files that contain drivers. In our example (yes, the library) the driver file should be called
books-controller.php . In addition, this file should contain a class, the controller itself, named as
follows: Library_Books_Controller and must inherit from the main class RMController . Finally,
the class must contain a method called list , which will be invoked by RMCommon to present a
result. Until here everything is clear? So these are the rules: - The driver files must be located in
the directory controllers of the module. - The file name must follow the rule -controller.php . -
The controlling class within the file must be named _ _controller , and should contain as many
methods as actions are to be processed. The methods / actions should be named according to
the action requested by the URL. If the action is called form , the created class must contain a
method form () . If the action is called categories-form , then the class must contain a method
called categories_form () . A controller class looks like this:
 class Mymodule_Nombrecontrolador_Controller extends RMController
{
 use RMModuleAjax , RMProperties , RMModels ;

 public function __construct () {
 parent :: __construct ();
 $ this -> default = 'index' ; // default action

 4 / 6

https://xoops.org/modules/news/article.php?storyid=6675
http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
http://sitio.com/inventorios
http://sitio.com/modules/inventory
http://sitio.com/

https://xoops.org - XOOPS Web Application System - Powered by You!

 $ this -> controller = 'categories' ;
 }

 public function index () {
 // Logic index action

 $ This -> tpl -> header ()
 requires $ this -> parent -> view ;
 $ this -> tpl -> footer ();
 }
}
What about the models? Models are only accessible through the controller. This means that
they can only be used by the methods of the controller class. The models also have some
specific rules: - Must be located in the module's /models folder . - A model file must be named
as -model.php . - The file must contain a class named _ _model . A typical statement from an
exact model would be:
 class Mymodule_Nombremodelo_Model extends RMActiveRecord

{
 use RMModels ;

 public function __construct () {

 parent :: __construct ('model' , 'module');

 / **
 * Titles table fields
 * /
 $ this -> titles = array (
 'column' => __ ('Column Title' , 'module'),
 'column2' => __ ('Title column2' , 'module'),
 ...
);

 }
}
And the views? Eventually we get the Views. These are actually templates that are derived
from the name of the action. For the above example, where the module is used library and the
driver is requested books for executing the method (action) list , Common Utilities get the
template list.php , because it is the one that corresponds to the action list . Easy, right? It
follows that the view files (templates) should be appointed as the action (controller method)
running. If our action is the name of form , so our staff must be appointed form.php . If the action
is the name -form categories , also our file should be named categories-form.php . One more
thing. The Views, as in any module, should be stored in the directory templates module, but not
directly, but in appropriate subfolder, depending on the following cases. - Templates Folder can
contain standard templates (as commonly used in the modules). - Modules can have templates

 5 / 6

https://xoops.org - XOOPS Web Application System - Powered by You!

for the control panel or section templates for public, therefore within the directory /templates
there should be two subfolders: backend and frontend . - Within each of these subfolders there
should be a new subfolder for each driver that handles Views. If the driver is called categories,
then there must be a subfolder called categories where the Views will be kept for each action.
This new approach of module development in XOOPS enables faster and more structured
development. Furthermore, with its auxiliary objects, Common Utilities facilitates the
implementation of AJAX in modules allowing more intuitive and easy to use experience for
users.

Powered by TCPDF (www.tcpdf.org)

 6 / 6

http://www.tcpdf.org

