
https://xoops.org - XOOPS Web Application System - Powered by You!

Tutorial: How to update tables to follow XOOPS' new naming scheme? - Tutorials

NEWS_PDF_AUTHOR: Mamba

NEWS_PDF_DATE: 2013/3/5 4:20:00

As you might already know, there is an effort to standardize our module development - from
using the same module Admin GUI structure, to using the same icons across all modules, from
using the same pagination structure for each table, to naming the tables and fields in a
consistent way (see this thread). This tutorial will show you how to modify your module so it can
rename the tables on the user site, when the user updates the module. This will follow the
scheme suggested by alain01 The new table naming scheme is: mod_AAA_BBBB where AAA
is the name of the module, and BBB is the name of the table. For example, when we have in the
News module a table called "topics", in the new updated version of News, it will become:
mod_news_topics Here are few steps to follow, as used recently in the Pedigree module called
"animal": 1) The new version should have the tables defined properly in the SQL file, so new
installation have the right tables installed right away 2) In the existing installation the users
normally copy files over, and then run "update" in the Admin. Therefore we'll need to add a file
with the updates. We'll call it "update_function.php" and will place it in /include folder 3) In order
for XOOPS to call this file, we'll add in xoops_version.php file following:
 $modversion['onUpdate'] = 'include/update_function.php';
4) In that file, we start by adding a function to check if the table that we want to rename, does
actually exist. This is done by using a function created by Hervet:
 function tableExists($tablename)
{
 global $xoopsDB;
 $result=$xoopsDB->queryF("SHOW TABLES LIKE '$tablename'");
 return($xoopsDB->getRowsNum($result) > 0);
}
5) then we add a following function that will be executed when we click on the Update button:
 function xoops_module_update_animal()
{
 global $xoopsDB;

 if (tableExists($xoopsDB->prefix('eigenaar'))) {
 $sql = sprintf(
 'ALTER TABLE ' . $xoopsDB->prefix('eigenaar') . ' RENAME ' . $xoopsDB->prefix(
'mod_pedigree_owner')
);
 $result = $xoopsDB->queryF($sql);
 if (!$result) {
 echo '' . _AM_PED_UPGRADEFAILED . ' ' . _AM_PED_UPGRADEFAILED2;
 $errors++;
 }

 1 / 4

https://xoops.org/modules/newbb/viewtopic.php?topic_id=75756
https://xoops.org/modules/newbb/viewtopic.php?topic_id=75311

https://xoops.org - XOOPS Web Application System - Powered by You!

 }
 return TRUE;
}
In this code above, we are checking if the "eigenaar" does exist, and if it does, then we're
renaming it to "mod_pedigree_owner'". Of course, this is done for each table that we want to
rename. 6) We also have to rename all occurrences of the tables in the code as well. a) as a
first step, it's easy to just run search & replace using as part of the search the word "prefiix", so
in our example, we'll replace: prefix("eigenaar") with: prefix("mod_pedigree_owner") This is for
cases where we call the tables in a conventional way. b) But people are creative, and it might
happen that they do it differently, so nothing will save us from testing, and eventually searching
for the word "eigenaar" in all files, and then making a judgment call if it is meant as a table and
therefore has to be renamed. The new naming scheme will make it easier two things: - to see in
phpMyAdmin (or any other database tool) all the tables from a module grouped together. It will
also distinguish them from the Core tables. - in the code it will also make it easy to find the
tables just by searching "mod_MODULENAME" In the near future, we'll also consolidate names
and characteristics of the typical fields in our modules, and provide them as guidelines. When
you look at our modules, the same field could be named differently in each module. Let's take
"Group ID" - it could be: gid, g_id, group_id, gr_id, etc. And if you are trying to maintain a
module from somebody else, we are wasting too much time trying to figure out what a particular
field is actually for. If you have improvements for this tutorial, please let us know. And most
importantly: - If you can help us to streamline and standardize module development, we
would very much appreciate it. - If you like how a particular module does something and
think that other modules should do the same, let us know. - If you see something cool
being done by other Open Source Projects that XOOPS could benefit from, please let us
know too. Please follow up in this thread

https://xoops.org/modules/newbb/viewtopic.php?topic_id=75756

https://xoops.org - XOOPS Web Application System - Powered by You!

As you might already know, there is an effort to standardize our module development - from
using the same module Admin GUI structure, to using the same icons across all modules, from
using the same pagination structure for each table, to naming the tables and fields in a
consistent way (see this thread). This tutorial will show you how to modify your module so it can
rename the tables on the user site, when the user updates the module. This will follow the
scheme suggested by alain01 The new table naming scheme is: mod_AAA_BBBB where AAA
is the name of the module, and BBB is the name of the table. For example, when we have in the
News module a table called "topics", in the new updated version of News, it will become:
mod_news_topics Here are few steps to follow, as used recently in the Pedigree module called
"animal": 1) The new version should have the tables defined properly in the SQL file, so new
installation have the right tables installed right away 2) In the existing installation the users
normally copy files over, and then run "update" in the Admin. Therefore we'll need to add a file
with the updates. We'll call it "update_function.php" and will place it in /include folder 3) In order
for XOOPS to call this file, we'll add in xoops_version.php file following:
 $modversion['onUpdate'] = 'include/update_function.php';
4) In that file, we start by adding a function to check if the table that we want to rename, does
actually exist. This is done by using a function created by Hervet:
 function tableExists($tablename)
{
 global $xoopsDB;
 $result=$xoopsDB->queryF("SHOW TABLES LIKE '$tablename'");
 return($xoopsDB->getRowsNum($result) > 0);
}
5) then we add a following function that will be executed when we click on the Update button:
 function xoops_module_update_animal()
{
 global $xoopsDB;

 if (tableExists($xoopsDB->prefix('eigenaar'))) {
 $sql = sprintf(
 'ALTER TABLE ' . $xoopsDB->prefix('eigenaar') . ' RENAME ' . $xoopsDB->prefix(
'mod_pedigree_owner')
);
 $result = $xoopsDB->queryF($sql);
 if (!$result) {
 echo '' . _AM_PED_UPGRADEFAILED . ' ' . _AM_PED_UPGRADEFAILED2;
 $errors++;
 }
 }
 return TRUE;
}
In this code above, we are checking if the "eigenaar" does exist, and if it does, then we're
renaming it to "mod_pedigree_owner'". Of course, this is done for each table that we want to
rename. 6) We also have to rename all occurrences of the tables in the code as well. a) as a
first step, it's easy to just run search & replace using as part of the search the word "prefiix", so
in our example, we'll replace: prefix("eigenaar") with: prefix("mod_pedigree_owner") This is for

 3 / 4

https://xoops.org/modules/newbb/viewtopic.php?topic_id=75756
https://xoops.org/modules/newbb/viewtopic.php?topic_id=75311

https://xoops.org - XOOPS Web Application System - Powered by You!

cases where we call the tables in a conventional way. b) But people are creative, and it might
happen that they do it differently, so nothing will save us from testing, and eventually searching
for the word "eigenaar" in all files, and then making a judgment call if it is meant as a table and
therefore has to be renamed. The new naming scheme will make it easier two things: - to see in
phpMyAdmin (or any other database tool) all the tables from a module grouped together. It will
also distinguish them from the Core tables. - in the code it will also make it easy to find the
tables just by searching "mod_MODULENAME" In the near future, we'll also consolidate names
and characteristics of the typical fields in our modules, and provide them as guidelines. When
you look at our modules, the same field could be named differently in each module. Let's take
"Group ID" - it could be: gid, g_id, group_id, gr_id, etc. And if you are trying to maintain a
module from somebody else, we are wasting too much time trying to figure out what a particular
field is actually for. If you have improvements for this tutorial, please let us know. And most
importantly: - If you can help us to streamline and standardize module development, we
would very much appreciate it. - If you like how a particular module does something and
think that other modules should do the same, let us know. - If you see something cool
being done by other Open Source Projects that XOOPS could benefit from, please let us
know too. Please follow up in this thread

Powered by TCPDF (www.tcpdf.org)

 4 / 4

https://xoops.org/modules/newbb/viewtopic.php?topic_id=75756
http://www.tcpdf.org

